Machinery Fault Diagnosis Scheme Using Redefined Dimensionless Indicators and mRMR Feature Selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global geometric similarity scheme for feature selection in fault diagnosis

This work presents a global geometric similarity scheme (GGSS) for feature selection in fault diagnosis, which is composed of global geometric model and similarity metric. The global geometric model is formed to construct connections between disjoint clusters in fault diagnosis. The similarity metric of the global geometric model is applied to filter feature subsets. To evaluate the performance...

متن کامل

Fusion of the Dimensionless Parameters and Filtering Methods in Rotating Machinery Fault Diagnosis

For the problem of large dimensionless index fluctuations in rotating machinery complex fault and that the corresponding scope is difficult to determine. In this paper proposes a rotating machinery complex fault method that combined dimensionless and the least squares method filtering. This method implementation filtering and determine the scope of the dimensionless index. By doing experiments ...

متن کامل

Feature Extraction and Selection for Automatic Fault Diagnosis of Rotating Machinery

In this work we present three feature extraction models used in vibratory data from rotating machinery for bearing fault diagnosis. Vibrations signals are acquired by accelerometers which are then submitted to different feature extraction modules. Our tests suggest that pooling heterogeneous feature sets achieve better results than using a single extraction model. Besides, different classifiers...

متن کامل

An improved wrapper-based feature selection method for machinery fault diagnosis

A major issue of machinery fault diagnosis using vibration signals is that it is over-reliant on personnel knowledge and experience in interpreting the signal. Thus, machine learning has been adapted for machinery fault diagnosis. The quantity and quality of the input features, however, influence the fault classification performance. Feature selection plays a vital role in selecting the most re...

متن کامل

Prediction of Protein Domain with mRMR Feature Selection and Analysis

The domains are the structural and functional units of proteins. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop effective methods for predicting the protein domains according to the sequences information alone, so as to facilitate the structure prediction of proteins and speed up their functional annotation. However, although many effor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2976832